A Novel Platform to Study Airway Constriction and Cilia Beating in Mouse Precision-Cut Lung Slices

Liah Fereydoonzad¹, Percival Graham¹, Mohammad-Bilaal Toorbally², Magali Boucher², Sophie Tremblay-Pitre², Annette Robichaud¹, Ynuk Bossé²

1-SCIREQ Inc., Montreal (QC), Canada, 2-Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec (QC), Canada

BACKGROUND

- » Precision-cut lung slices (PCLS) are an important ex vivo research model. However, standardized protocols and commercial systems able to automate difficult and labor-intensive tasks in a reproducible manner are lacking.
- Bronchoconstriction experiments require detecting the beating of micron scale cilia, discerning the contour of the lumen of an airway, and reliably adding a dose without perturbing the lung slice.

The physioLens and the dosing module

OBJECTIVES

- » Validate the physioLens, an automated microscopy platform for:
- i. Airway lumen area measurement
- ii. Cilia beating observation and measurement
- iii. Automated fluid handling
- » Provide guidance on lung dissection and slice selection.

A nozzle changes the media in the well plate, dosing the PCLS

METHODS

Mouse lung dissection and slicing

- » Three 22 g female mice (Hb9-mitoEGFP) of more than 12 weeks of age were euthanized by an overdose of Pentobarbital.
- » After dissection and tracheal cannulation, 2 % agarose from a 44 °C water bath was used to fill the lungs.
- » Lungs were inflated until a distinct point was formed on the post-caval lobe, requiring approximately 1.5mL of agarose.
- » ~ 0.5 mL of air was quickly added after agarose inflation was completed.
- » It was important to clear tissue around the post-caval lobe, in order to be able to see the formation of a distinct point.
- » Compresstome VF-310-0Z (Precisionary) used for slicing.

Guidelines on filling and slicing

Dose Response

- » physioLens with automated fluid handling system.
- » Slices were dosed with HBSS with no agonist, then doses of 5 μ M and 125 μ M of methacholine, for 8 minutes, to ensure max contraction was reached.
- » Airways ranging from 100 µm to 500 µm in diameter with intact cilia beating were selected.

RESULTS

Dosing verification

» The data below is for a 2.4 mL/s flow rate in a well of a six well plate with an initial volume of 6.5 mL.

Dosing measurement concept and performance

Cilia beating validation

- » Cilia beating can be observed as brightness fluctuations which can be analyzed to extract a dominant frequency.
- » Maps of beat frequency can be then obtained by analyzing temporal changes in brightness associated with each pixel.

interest denoted by square boxes

- » Cilia beat frequency is known to increase with temperature.
- » The correlation between beating frequency and temperature confirms the performance of the hardware and analyzers.

RFSUITS

Lumen area measurements

- » The slice is not displaced during dosing, as seen by the repeated images of the same airway.
- » Some dilation was observed when administering media with no agonist

Bronchoconstriction as a function of lung slice position

Max contraction at 125 μM MCH. Mean +/- stdev for 5-10 airways for 3 mice

SUMMARY

- » Automated microscopy and fluid handling can accomplish airway hyperresponsiveness studies in mouse PCLS.
- » Proper filling was ensured by tracking the post-caval lobe.
- » Cilia beating can be tracked with a 10x or 20x objective.
- » The final drug concentration can reach 95% of the target concentration with less than 35mL of solution. $_{\mbox{\tiny {\rm BI}}}$
- » Selecting slices from generations 4-6 (slices 13-25) reduces variability.

DISCLOSURE

LF, PG and AR are or were employed by SCIREQ Inc., a commercial entity with interests in a subject area related to the content of this presentation. SCIREQ Inc. is an emka TECHNOLOGIES company.

